Grade Results’ career pathways have course subjects in 17 career clusters. Students can take classes tailored to their cluster, no matter what they choose to do after high school graduation. Each cluster will include multiple career pathways.
Grade Results offers a variety of certification courses that sets high-school graduates and older adults on the path to success. There are several fields available which include technology and humanities certification courses.
Project-based learning is an instructional approach that utilizes learning activities that motivate and engage students’ interest and are designed to help students solve real-world problems.
The Grade Results platform uses its cutting-edge Learning Management Software (LMS) to accommodate blended learning.
Proven Content | Online Instructors | Live 24/7
Online Learning Just Got Smarter!
Today’s students interact comfortably with the online world and the educational programs it offers.
Since much of what we are is due to our DNA, it is important to understand how our cells receive and translate their instructions. Not all cells develop in the same way, and each person’s cells are unique, even if their DNA came from the same set of parents. So what influence do our parent’s genes have on our development? Are there other things that can influence how our cells express themselves? Why is it important for scientists to understand this important process? The answers to these questions can be found by looking more closely into genetic inheritance and another type of inheritance called epigenetics.
What will you learn in this unit?
What are stem cells? They are not the ethical villains that some may think but life-giving opportunities for hundreds of thousands of grateful bone marrow transplant recipients who suffer from cancers of the blood such as leukemia and lymphoma. Stem cells may one day be able to treat degenerative diseases such as spinal cord injuries, type I diabetes, and heart disease. Let’s consider not only the science behind stem cells but also the ways scientists are using them to treat disease.
What will you learn in this unit?
Since the discovery of DNA, scientists have continually investigated how it works and can be manipulated. This has led to the age of genetic engineering, which is already improving the lives of millions through advances in agriculture, the environment, and medicine. Many feel that the discovery of CRISPR could be our next quantum leap forward in medicine. This powerful, precise, and efficient gene-editing tool first looks for a mistake in a cell’s DNA and then cuts it out and replaces it with a new DNA sequence! Scientists are excited to apply this new technology to treat genetic diseases like sickle cell anemia and others. We’ll consider the exciting discoveries in genetic engineering that brought us to today, how they work, and what they promise for the future.
What will you learn in this unit?
Microscopic organisms make us sick and can even kill us, but evolution has not left us defenseless. All organisms, from bacteria to humans, possess some sort of immune system that recognizes invading pathogens and rallies a force to destroy them. We can prime our immune system and jumpstart this process through vaccination. We can even engineer specific immune cells called CAR T cells to seek out and destroy cancer cells. Biotechnology even harnessed the power of antibodies for routine clinical tests such as ELISA and Western Blotting. Let’s dive into this world of immunology and learn about the vigilant army of cells that are programmed and ready to protect us.
What will you learn in this unit?
How do scientists determine which gene to turn off to prevent cancer cells from growing or figure out how to activate immune cells to respond to a virus? Instead of using themselves as guinea pigs, scientists begin by experimenting with model organisms. Here, we will consider how model organisms are related to humans, which ones are generally used in the lab, and some of the important discoveries that have come from their use. We’ll also consider some of the ethical issues that arise from experimenting on non-humans and how scientists balance these issues with the greater good.
What will you learn in this unit?
What do the issues of world hunger, the oil spill from the Deepwater Horizon rig, and our growing carbon footprint all have in common? The solutions to these problems are being made possible by biotechnology! We will consider which biotechnologies are being used to accomplish these tasks, as well as learn more about some of the ethical issues that may arise in their use. We will also discuss the important work of organizations such as the US Food and Drug Administration, the US Environmental Protection Agency, and the US Department of Agriculture to provide oversight. Let’s learn more about genetic engineering uses in agriculture and the environment to see how these advances are affecting us now and will continue to do so in the future.
What will you learn in this unit?
A biotech manufacturing facility is a vibrant exciting microcosm of the outside world and one of the most exciting places you can be fortunate enough to work! So what goes on in a biotechnology company? Let’s learn about the different departments you may one day get a chance to work in, and how they contribute to create, develop, and manufacture lifesaving medications. We will also consider how the government oversees these companies and works alongside their employees to make sure the final products are safe for consumers.
What will you learn in this unit?
A life-changing discovery is made after hours of painstaking effort in the laboratory… CRISPR technology has the potential to cure genetic diseases! How do we effectively communicate this information in a way that is credible, believable, honest, and in a format that both the expert and layman can appreciate? Effective communication is key. If scientific research is successfully communicated, it has the potential to raise the public’s awareness of exciting scientific topics as well as create a sense of wonder about the world around us. Researchers must therefore have strengths with both written and verbal communication skills. Avenues of communication include publication in trusted peer-reviewed journals, presentations at local and national meetings, and high-quality education in the classroom.
What will you learn in this unit?
Physical
Software
Optional