Grade Results’ career pathways have course subjects in 17 career clusters. Students can take classes tailored to their cluster, no matter what they choose to do after high school graduation. Each cluster will include multiple career pathways.
Grade Results offers a variety of certification courses that sets high-school graduates and older adults on the path to success. There are several fields available which include technology and humanities certification courses.
Project-based learning is an instructional approach that utilizes learning activities that motivate and engage students’ interest and are designed to help students solve real-world problems.
The Grade Results platform uses its cutting-edge Learning Management Software (LMS) to accommodate blended learning.
Proven Content | Online Instructors | Live 24/7
Online Learning Just Got Smarter!
Today’s students interact comfortably with the online world and the educational programs it offers.
Science is complex and dynamic while also being strict, methodical, and creative! We can describe and think of science in so many ways, but in order to go deeper into marine science, we’ll need to nail down a working definition of science in general. How do we define this broad, all-encompassing term? We will arrive at a definition for science and work through what it means to be a scientist, how to test your ideas and observations scientifically, and how to present them to the world!
What will you learn in this unit?
Have you ever heard of the chemical compound dihydrogen monoxide? Every so often, a news outlet or a prank group will post an article or a survey listing the hazards of this chemical, like its ability to corrode and damage metals and the fact that it’s a major component of acid rain. While this is all true, it’s kind of a manipulation of the truth. Dihydrogen monoxide is simply the chemical name for water! Humidity does corrode metals, and water is obviously a major component of any kind of rain. Luckily for you, you’re about to develop such a solid understanding of the science of water that you’ll never fall for any kind of dihydrogen monoxide prank!
What will you learn in this unit?
Earth is ever changing and ever moving. Whether it be the consistent shifting of continents, the violent shaking caused by an earthquake, or the fluctuating shapes of erratic coastlines, Earth never seems to rest. Understanding the mechanisms behind each of these processes will leave you with a greater appreciation for the monumental force that is Mother Nature. Grasping these concepts requires that we learn about the scientists, oceans, and landmasses of the past so that we can anticipate how these geological processes may affect our future.
What will you learn in this unit?
From 1962 to 1963, the Galveston Laboratory of the US Bureau of Commercial Fisheries (now known as the National Oceanic and Atmospheric Administration, or NOAA) released close to 8,000 glass bottles into the Gulf of Mexico. More than 57 years later, a couple walking the beach of Padre Island National Seashore in Corpus Christi, Texas, found one of those bottles. Inside the bottle, they discovered a postcard asking for the date and location the bottle was found. If the postcard was mailed back to NOAA, the couple would receive a $0.50 reward! This experiment was meant to study ocean currents. Luckily, we now have much more sophisticated techniques and tools that help us to understand how the ocean moves. While we may all be familiar with terms like “current,” “wave,” “tide,” and “hurricane,” do we truly understand how these concepts describe hydrological movements within aquatic ecosystems? Don’t worry—it won’t take 57 years to find out!
What will you learn in this unit?
The Great Divide—otherwise known as the Continental Divide of the Americas—determines how water flows as it makes its way from the northern tip of Alaska down through Canada, the United States, and then Mexico. If water falls to the west of the divide, it flows to the Pacific Ocean. If water falls to the east of the divide, it eventually makes its way to the Gulf of Mexico. The ability of water to flow all around the world is what helps life flourish in even the most remote locations. Learning more about aquatic ecosystems and how all bodies of water are connected will help us to understand how vital it is that we advocate for adequate water quality around the globe.
What will you learn in this unit?
Imagine you are a fish. What is the first thing you need for survival? Water! Okay, quick—find a body of water. Luckily for you, the vast majority of Earth’s surface is covered by water. You could choose to live in the ocean, but where in the ocean would you live? Surface waters? Deep water? Maybe fresh water would be better for you! Even though we aren’t fish and won’t have to make these choices, learning about the many aquatic ecosystems and the factors that impact whether an organism can live somewhere or not can give you insight into how human activity affects aquatic systems.
What will you learn in this unit?
The Great Barrier Reef is one of the seven wonders of the natural world. This sensational underwater environment is a large, sweeping ecosystem that is home to 3,000 coral reefs, each of which is considered its own unique ecosystem. Let’s zoom in on one of these smaller ecosystems: A large barracuda lingers overhead as hundreds of tiny damselfish actively feed on algae growing on the reef, a lone tiger shark swerves through the dynamic coral, and many smaller prey fish lunge inside their hiding spots along the living reef. How do all these organisms live harmoniously within the same area? In this unit, we will define all the interspecies relationships mentioned above—and more!
What will you learn in this unit?
We as humans tend to think of “life” in terms of terrestrial life-forms. However, much of life’s history has occurred under water. Approximately 2.3 billion years ago, a microbe known as cyanobacterium was the first known photosynthetic organism to produce gaseous oxygen—a game changer for life on Earth. However, it wasn’t until about 252 million years ago that shark and fish ancestors started to populate ocean environments. So, how do we go from cyanobacterium to the intense diversity we see today among plants and animals? The answer is simple: evolution. But just what exactly is this complex process? Let’s learn all about it!
What will you learn in this unit?
Physical
Software
Other
Optional